Characterization of a Solid State DNA Nanopore Sequencer Using Multi-scale (Nano-to-Device) Modeling

نویسندگان

  • Jerry Jenkins
  • Debasis Sengupta
  • Shankar Sundaram
چکیده

Nanobiotechnology is a rapidly advancing frontier of science with great potential for beneficial impact on society. Unfortunately, design of integrated nano-bio systems is a complex, laborious task with large failure rates. Current models describing molecular level behavior are expensive, while device design codes lack the necessary nanophysics. The objective of this work is to demonstrate multiscale, multiphysics modeling of an integrated nanobio device, where nanoscale effects are efficiently integrated with a continuum model. A three-level modeling paradigm was developed for this purpose. The feasibility of this approach is demonstrated by characterizing a nanoporebased DNA sequencing device. In the demonstration calculations, the dependence of the device performance on the nucleotide sequence, pore diameter, and applied voltage was determined. Extension of the approach for describing biomolecular processes in other commercial nanobiosystems is discussed. The main conclusions of the device level simulations are presented along with an overview of future work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA Sensing using Nano-crystalline Surface Enhanced Al(2)O(3) Nanopore Sensors.

A new solid-state, Al(2)O(3) nanopore sensor with enhanced surface properties for the real-time detection and analysis of individual DNA molecules is reported. Nanopore formation using electron beam based decomposition transformed the local nanostructure and morphology of the pore from an amorphous, stoichiometric structure (O to Al ratio of 1.5) to a hetero-phase crystalline network, deficient...

متن کامل

Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.

Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic mode...

متن کامل

Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA

With the aim of developing a DNA sequencing methodology, we theoretically examine the feasibility of using nanoplasmonics to control the translocation of a DNA molecule through a solid-state nanopore and to read off sequence information using surface-enhanced Raman spectroscopy. Using molecular dynamics simulations, we show that high-intensity optical hot spots produced by a metallic nanostruct...

متن کامل

Directly observing the motion of DNA molecules near solid-state nanopores.

We investigate the diffusion and the drift motion of λ DNA molecules near solid-state nanopores prior to their translocation through the nanopores using fluorescence microscopy. The radial dependence of the electric field near a nanopore generated by an applied voltage in ionic solution can be estimated quantitatively in 3D by analyzing the motion of negatively charged DNA molecules. We find th...

متن کامل

Ionic Current-Based Mapping of Short Sequence Motifs in Single DNA Molecules Using Solid-State Nanopores

Nanopore sensors show great potential for rapid, single-molecule determination of DNA sequence information. Here, we develop an ionic current-based method for determining the positions of short sequence motifs in double-stranded DNA molecules with solid-state nanopores. Using the DNA-methyltransferase M.TaqI and a biotinylated S-adenosyl-l-methionine cofactor analogue we create covalently attac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005